目的 探讨盐酸二甲双胍(MF)在高糖环境中对成骨细胞的保护作用与过氧化物酶增殖激活物受体(PPAR)γ表达的关系。方法 体外培养小鼠颅骨原代成骨细胞, 分为5.5 mmol·L-1正常糖组、25 mmol·L-1高糖+不同浓度盐酸二甲双胍干预组(0、25、50、100 μmol·L-1盐酸二甲双胍);干预时间1周、2周、3周, 半定量RT-PCR法检测细胞PPARγ、骨形成蛋白(BMP)-2的mRNA表达, Western印迹检测PPARγ的蛋白表达情况。结果 与正常糖组相比, 在相同干预时间高糖组细胞的PPARγ mRNA表达量增加(均P<0.05), 高糖干预3周细胞PPARγ蛋白表达量也明显增加(P<0.05);高糖组BMP-2 mRNA表达量降低(均P<0.05)。同一干预时间, 高糖环境随盐酸二甲双胍浓度在0~100 μmol·L-1内增加, 细胞PPARγ mRNA表达递减、BMP-2 mRNA表达则递增(均P<0.05); 随着干预时间从1周~3周延长, 各高糖干预组PPARγ mRNA表达量则逐渐上升, BMP-2 mRNA表达量变化则相反(均P<0.05)。干预3周后, 随着盐酸二甲双胍浓度在0~100 μmol·L-1内增高, 高糖环境PPARγ蛋白表达量逐渐减少(P<0.05)。结论 病理浓度的葡萄糖导致成骨细胞分化不良, 成骨能力下降可能与诱导PPARγ mRNA及蛋白表达增高有关;应用盐酸二甲双胍可抑制PPARγ的表达, 保护成骨细胞。
Abstract
OBJECTIVE To investigate the protective effects of metformin hydrochloride (MF) on osteoblasts which were exposed to constant high glucose condition, and the relationship between MF and the expression of peroxisome proliferator-activated receptor (PPAR)γ .METHODS Mouse cranium osteoblasts were cultured in vitro and divided into 5.5 mmol·L-1 normal glucose+0 μmol·L-1 MF group, 25 mmol·L-1 high glucose with different concentration of MF (0, 25, 50, 100 μmol·L-1 MF, respectively) and intervened for 1, 2 and 3 w, then the mRNA expression levels of PPARγ and bone morphogenetic protein (BMP)-2 were detected by RT-PCR, and the protein expression levels of PPARγ was examined by Western blot.RESULTS ①The mRNA expression levels of PPARγ was marked higher in high glucose group compared to the control group with the same intervene time (all P<0.05); when the intervention time prolonged to 3w, the protein expression of PPARγ increased significantly (P<0.05); the mRNA expression levels of BMP-2 in the high glucose group was lower than in the control group (all P<0.05). ②At the same intervening time, the expression of PPARγ mRNA decreased while BMP-2 mRNA increased (all P<0.05) with the increasing concentration of MF (from 0 μmol·L-1 to 100 μmol·L-1); when the intervention time prolonged from 1w to 3w, the mRNA expression levels of PPARγ increased in all the high glucose groups while the mRNA expression levels of BMP-2 decreased (all P<0.05).③When interviewed for 3w, the protein expression of PPARγ decreased gradually with the increasing concentration of MF in high glucose condition (P<0.05). CONCLUSION Pathological concentration of glucose could lead to poorly differentiated of osteoblasts, which might association with the enhanced mRNA and protein expression levels of PPARγ; MF can protect osteoblasts by restraining the expression of PPARγ.
关键词
盐酸二甲双胍 /
成骨细胞 /
过氧化物酶增殖激活物受体γ /
骨形成蛋白2
{{custom_keyword}} /
Key words
metformin hydrochloride /
osteoblasts /
peroxisome proliferator-activated receptor γ /
bone morphogenetic protein-2
{{custom_keyword}} /
中图分类号:
R692.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
DUAN P, KANG B, GAO E. Research progress of metformin effects on endocrine and metabolic disorders . Chin Pharm J (中国药学杂志), 2005, 40(11);805-807. YAN S J, LI Y M, SHEN X M. Protective effect of metformin on glucotoxicity in mouse cranium osteoblasts . Chin J New Drugs Clin Rem (中国新药与临床杂志), 2011, 30(11):852-856. CORTIZO A M, SEDLINSKY C, MCCARTHY A D, et al. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture . Eur J Pharmacol, 2006, 36 (1-2): 38-46. AKUNE T, OHBA S, KAMEKURA S, et al. PPAR insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitom . J Clinlnt, 2004, 113(6): 846-855. SOROCEANN M, MIAO D, BAI X Y, et al. Rosiglitazone impacts negatively on bone by promoting osteoblast osteocyte apoptosis . Endocrinology, 2004, 183(1): 203-216. PEI L M, TONTONOZ P. Fat′ s loss is bone′s gain . Clinlnt, 2004, 113(6): 805-806. GAO Y, LI Y, XUE J, et al. Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells . J Pharm Parmacol, 2008, 60(12):1695-1700. LI M R, LIN J A, YAN S J. The effects of pioglitazone on proliferation, apoptosis and expressions of functional protein in normal osteoblastic cell MC3T3-E1 . Chin J New Drugs Clin Rem (中国新药与临床杂志), 2011, 30(1): 24-28. MOERMAN E J, TENG K, LIPSCHITZ D A, et al. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways . Aging Cell, 2004, 3(6): 379-389. KHAN E, ABU-AMER Y. Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts . J Lab Clin Med, 2003, 142(1): 29-34. ZHANG X, SCHWARZ E M, YOUNG D A, et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair . J Clin Invest, 2002, 109(11): 1405-1415. RYOO H M, LEE M H, KIM Y J. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene, 2006, 366(1): 51-57. LUPPEN C A, LECLERC N, NOH T, et al. Brief bone morphogenetic protein treatment of glucocorticoid-inhibited MC3T3-E1 osteoblasts rescues commitment-associated cell cycle and mineralization without alteration of Runx2. J Biol Chem, 2003, 278(45): 44995-45003. MATSUBARA T, KIDA K, YAMAGUCHI A, et al. BMP2 Regulates osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem, 2008, 283(43): 29119-29125.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
福建省自然科学基金资助项目(2013J01295);福建省卫生厅青年课题基金(2010-2-26);福建医科大学教授学术发展基金(JS11015)
{{custom_fund}}